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SUMMARY

A solution is presented for the problem of the buckling of curved

rectai_ular panels subjected to "combined shear and direct axial stress.

Charts giving theoretical critical combinations of shear and direct axial

stress are presented for panels having five different length--width

ratios.

Because the actual critical compressive stress of rectangular

panels having substantial curvature is known to be much lower than

the theoretical value, a semiempirlcal method of analysis of curved

panels suoJected to combined shear and direct axial stres_ is presented

for use in design.

INTRODUCT ION

An investigation was made to determine the combinations of shear

and direct axial stress that cause simply supported curved rectangalar

panels to buckle. Because panels having substantial curvature are

Icnown to buckle in compression at a stress well below the theoretical

value, the solution must be at least partly empirical. In order to

eliminate the necessity for an extensive test program, a theoretical

solution to the problem is presented and Js modified for use in design.

The modifications to the theoretical interaction c_ves are based

upon results of tests on the buckling of curved rectangular panels

under combined shear and axial compression and incorporate results

for curved panels subjected to shear alone (reference l) and axial

compression alone (references 2 and 3). The resulting empirical

interaction curves are expected to give a good approximation to the

actual critical combinations of shear and direct axial stress.
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amn, apq

k s

k x

(Rs )th

(Rs )exp

SYMBOLS

axial or circumferential dimension of panel, whichever

is larger

axial or circumferential dimension of panel, whichever
is smaller

integers

radius of curvature of panel

thickness of panel

displacement of point on shell median surface in

radial direction; positive outward

axial coordinate of panel

circumferential coordinate of panel

flexural stiffness °f panel per unit length IL _1t-3--2_2

Young' s modulus of elasticity

b2 2
curvature parameter (_K_)

coefficients of terms in deflection functions

critical-axial-stress coefficient kW)

theoretical shear-stress ratio (ratio of shear stress

present to theoretical critical shear stress in

absence of other stresses)

experimental shear--stress ratio (ratio of shear stress

present to experimental critical shear stress in

absence of other stresses)

I
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(Rx) th

(Rx) exp

._ =a
b

T

(Ix

_4

_Ttl =--.-_+ 2

theoretical direct-e_ial-stress ratio (ratio of direct

axial stress present to theoretical direct axial

stress in absence of other stresses)

experimental dlrect-axial--stress ratio (ratio of direct

axial stress present to experimental critical direct

axial stress in absence of other stresses)

Poisson' s ratio

critical shear stress

critical axial stress

_4 _4

ax2 y2

RESULTS AND DISCDSSION

Theoretical Solution

The combinations of shear and axial stress that cause rectangular

curved panels (fig. l) to buckle may be obtained from the equations

ks_2D
T=

b2t

and

kx_2D

_x = b2 t

when the stress coefficiente k s and kx are known. The theoretical

combinations of stress coefficients for simply supported curved

rectangular panels having different ratios of circumferential to

axial dimension are given in figure 2. These combinations of stress

were obtained from the solution presented in the appendix, based

upon the small deflection theory of elastic stability of curved
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plates. Each part of figure 2 presents results for panels having a
constant ratio of circumferential to axial dimsnsion but various values
of the curvature parameter Z.

Figure 2 indicates that, irrespective of the length-_idth ratio
of the panel, the theoretical interaction curves approach those for a
cylinder as the value of Z increases. The value of Z at which this
correlation between the cylinder and rectangular panel becomss close
increases as the ratio of circumferential to axial dimension of the
panel decreases. The critical compressive stress of rectangular panels
is very nearly equal to that of cylinders even at low values of Z,
whereas the critical shear stress differs greatly at low values of Z;
therefore, a good indication of the point at which the interaction curve
for a panel is approximated very closely by that for a cylinder is the
value of Z at which the respective critical she_r stresses are nearly
equal. These values of Z m_ybe obtained for simply supported panels
having various length-width ratios from figure 3, which is taken from
reference 1. At sufficiently high values of Z, as in the case of a
cylinder (see reference 4), the theoretical interaction curves in
stress--ratio form maytherefore be approximated in the compression
range by a straight line from (Rx)th = 1 to (Rs)th = 1 and in the
beginning of the tension range by a straight line of slops -0.8
passing through (Rs)th = 1. The critical-axial-stress and critical-
shear-stress coefficients are obtained, respectively, by multi--
plying the stress ratio (Rx)th by the theoretical critical stresses
for axial compression alone and the corresponding stress ratio (Rs)th
by the theoretical critical stresses for shear alone. These theoretical
critical stresses maybe obtained from figures 4 to 7, which are taken
from references 1 to 3-

Although a theoretical solution is given only for simply
supported panels, the conclusions drawn as to the slope of the
interaction curves maybe extended to clamped panels, because clamped
panels of appreciable curvature buckle at stresses equal to or only
slightly higher than simply supported panels. (See figs. 4 to 7.)

The interaction data computedfor simply supported panels are
given in table 1.

Empirical Interaction Curves

Curved rectangular panels are knownto buckle in compression at
stresses well below the theoretical values, whereas they buckle in
shear at stresses close to the theoretical values; therefore, the
theoretical solution for the critical combinations of compression and
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shear must be modified so that it may be used for the design of panels

subjected to combined shear and axial compression. Empirical interaction

curves for long plates with transverse curvature and for cylinders

(references 3 and 4) indicate that the design curves in the compression

range for rectangular panels with substantial curvature would be of the

form

2

(Rs)th + (Rx)e_ = 1 (1)

where the denominators of the stress ratios (Rs)th and (Rx)ex p ar8_

respectively, the theoretical critical stress of the panel in shear

alone and the experin_ntally determined critical stress of the panel

in axial compression alone. Equation (i) should be conservative for

all panels regardless of the length-_idth ratio and should become more

conservative as the ratio of th_ axial to the circumferential dimension

increases.

The critical shear stress to be used as the denominator of the

stress ratio (Rs)th may be obtained from figures 6 and 7. In order

to eliminate the need for interpolation for the critical shear stress

of curved rectangular panels of any length-width ratio, the results

of figure 6 for panels with simply supported edges are replotted

in terms of other parameters in figure 8. The ordinate in figure 8

is the increase in the critical-shear-stress coefficient 2_ks over

the flat--plate value and the abscissa is a function of the curvature

parameter Z and the length-width rati_ of the panel _. In using

this figure _ should be taken as equal to 1 whenever the circumfer-

ential dimension is equal to or greater than the axial dlmsnsion. The

value of the shear--stress coefficient for a panel is determined by

adding the value of Aks found from figure 8 to the flat-plate value

given approximately by the equation

4
ks = 5-35 +--w

as obtained from reference 5 or more accurately by

4

k s = 5.34 + --/B7"---"_
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where _ is a/b. In a similar way a curve may be obtained for panels
with clamped edges by replotting the results of figure 7 in terms of
the sameparameters as figure 8.

The critical compressive stress to be used as the denominator of
the stress ratio (RX)exp maybe approximated by the design curves of
figures 4 and 5 for cylinders and long curved plates, respectively.

At very low values of Z (Z _ I0), panels buckle in compression
at a stress close to the theoretical value and the _heoret'ical inter-
action curves may be used for design.

Rectangular curved panels subjected to combined shear and tension
maybe expected to buckle at stresses that agree closely with the
theoretically predicted values because tension tends to minimize
initial imperfections. The theoretical interaction curve should
therefore be used for this range.

In connection with the present paper a set of 25 panels that had
been previously buckled were subjected to a combination of shear and
compression. (The previous results were presented in reference 6.)
Becausemost or perhaps all of these panels had large initial eccen-
tricities an inordinate amount of scatter in the various test results
was found. Comparisonscould be made, however, between the different
critical combinations of stress on each panel. These comparisons are
shownin stress--ratio form in figure 9, in which the stress ratios
are based on the experimental stress for buckling under either compres-
sion or shear alone. These comparisons confirm the shape of the curve
represented by equation (1) in the compression range.

C0NCLUDINGREMARKS

The theoretical solution for the buckling of rectangular curved
panels in combined shear and direct axial stress indicates that the
behavior of a panel is similar to that of a cylinder when the curvature
parameter is sufficiently high, irrespective of the length--width ratio
of the panel. For lower values of the curvature parameter theoretical
interaction curves for panels of five different length-width ratios are
presented that give either the shear or direct axial stress required for
buckling whena given amount of the other stress is present.

I
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Because a panel having substantial curvature buckles in compression

alone at a stress well below the theoretical critical stress, the theo-

retical results for the critical combinations of stress are modified in

the compression range for the purposes of design.

Langley Aeronautical Laboratory

National Advisory Committee for Aeronautics

Langley Air Force Base, Va., June 23, 1949
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APPENDIX

THEORETICALSOLLVfION

The problem of the buckling of a simply supported rectangular
curved panel under combined shear and direct axial stress (fig. l) is
solved in a manner similar to the one used for the buckling of a panel
under shear alone. (See the appendix of reference 1.)

The equation of equilibrium of reference i is modified to introduce

direct axial stress and becomes

_4 w + Et _7-4 84w + 2vt 82w + _x t 82w = O

r2 _x4 _x_y _x2

where x and y are, respectively, the axial and circt:_ferentlal

coordinates.

The problem is solved by use of the Galerkin method as outlined

in references 7 and 8. As in the case of shear alone, the following

series expansion is used for w

w = _ _ amn sin m_--_xsin n_y
a b

m=l n=l

(A2)

which imposes the boundary conditions of simple support.

Division of equation (AI) by D gives

+ 84wCw 12Z2 V-4 --+

7-
2ks _2 82w kx _2 82w

+

b2 8x_y b 2 8x 2
=0

The equation of equilibrium may be represented by

Qw=0
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where Q is the operator defined by

q=@+_12z 2v -4m84 +2k8 _2 82 +kx _282
b4 8x_ b2 8xSy t2 8x2

According to the Galerkln method the coefficients are chosen to satisfy

the equations

sln p____xs ln q----Qw dx dy = 0
a

(A3)

(p = l, 2, • • .; q = l, 2, . . .)

When the expressions for Q and w are substituted in equation (A3)

and the indicated operations are performed, the following set of

algebraic equations results:

_p2 + q2j32) 2 + 1__2 Z264p 4
apq L _:4 (p2 + q2p2) 2

- kx_2p I

32p3ks Z _-- am n
+ 7 m=l n=l

mnpq

(m 2 _ p2)(q2 _ n2)

=0

(p = i, 2, • . .; q = i, 2, . • .)

where the summation includes only those values of m and n for

which m ± p and n ± q are odd. The condition for a nonvanlshing

solution of these equations is the vanishing of the determinant of the

coefficients of the unknown values of apq. Thls infinite determinant

may be factored into two infinite subdetermlnants, one for p ± q even

and the other for p ± q odd. The vanishing of these subdetermlnants

leads to determlnantal equations similar to equations (9) and (lO) of

reference l, except that Mpq is now defined by
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_2 _ 2 12 z2P424
Mpq= _ p2+ q2_2) +

321B3ks [ 7 (p2 + q2j32) 2
-- kx_2p21

These determinants give the combinations of stresses that cause

buckling of curved plates with various ratios of axial to circumferential

dimension. The solution to the determinant where p ± q is even

corresponds to a buckle pattern that is symmetrical about the center

of the panel, and the solution where p ± q is odd corresponds to a

buckle pattern antisymmet#ical about the center of the panel.

By use of a finite determinant including the rows and columns

corresponding to the most important terms (usually ten are sufficient)

in the expansion for w (equation (A2)), the two determinantal equations

were solved by a matrix iteration method (reference 9) for the lowest

combinations of kx and k s that satisfied the equations. The present

solution was found by maintaining kx at an assumed constant value and

solving for the lowest value of ks that satisfies each of the two

equations. The lower of the two ks values found by solving both

determinantal equations with a constant kx value is the critical--shear-

stress coefficient for the values of _, Z, and kx under consideration.

This procedure is repeated for a given value of 6 and Z, and several

constant values of kx are used until enough points are obtained to

draw an interaction curve. The computed interaction data are presented

in table 1.

Figure 2 gives the interaction curves obtained from the lower

combinations of interaction data presented in table 1. The discontinu-

ities in the curves of these figures are caused by a change of buckle

pattern from sym_netrical to antisymmetrical.

In the previous discussion a and b are, respectively, the

axial and circumferential dimensions of the panel. For the purposes

of comparison with the cylinder, the definitions of a and b were

reversed in table 1 and in the figures. No changes were made in the

definitions of kx, ks, Z, and _.
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TABLE 1

THEORK'rICAL COMBINATIONS OF S]_AB-STRESS AND AXIAL-STRK,qS COEFFICI]_TS

FOR SD4PLY _ RECTANGULAR _ PANEI_

b

i_

p

1.5

Z

1

10

3O

100

10

3O

100

10

100

4.03

3.6

2

0

-3.6

7.08
6
4
0

-6

21.08

18

I0

0

-18

70.3
6O
40
0

-6O

4.37
4

2

0

7.17
6
4
0

-6

21.16
18
lO

0

-18

70.2
6O
4o
0

-6O

_.03

3.6

2

0

-3.6

7.08
6
4

0

-6

70.3

6O

4O

0

-60

Even determinant Odd determinant

0

3.13o

6.652

9.44

13.13

0

&.431

7.hA7

11.65

16.6o

o

5.603

28.07

0

10.07

34.65

2.795

5.376

7.124

10.04

3.419

5.522

8.550

12.26

4.8_9
9. 338

14.3o

22.16

8.903

3o._
_6.78

3.5_o
5.119

6.618

8.755

3.402
5•146
7.645
lO.78
o
7.642

14.82

26.96

42.O2

7.704

11.59
14.9o

6,766

12.77
16.93

6.8_6

11.99

17,59

26.53

7.433

16.97

33.55

55.68

0

2. 334

5.990

8.025
11.14

o

3.882

9.750

13.53

o

5.208

15.38
2z.34

0

7._76

14.61

27.i5

4_.24

0

_.168

6.652

9.285

0

3.198

8.433

11.96

8.398
16.21

26.19

39,72

I
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TABLE i.-- Concluded

THEORETICAL COMBINATIONS OF SHEAR_ AND AXIAL-S_

COEFFICIESrS --Concluded

C(Ta

©

1.5

2

Z

1

lO

3O

1

lO

k X k 8

fTtb2 

Even determinant

2.15
1.8

i

0

-i. 8

7.42
6
4
0

-6

21.o7
18
I0

0

-18

1.57

1.3
.8

0

-i. 3

7.08
6
4
0

-6

0

3.OO6
5.314

7.373
9.588

4.448

io.38
14.58

0

4.574
9.84O

15.23
24.O9

0

3.293

5.o53
6.676

8.374

3.738

8.983

13.z8

Odd determinant

6.257
..... o

7.994

9.621

0

3.53o
5.822
9.49o

13.90

3.694

15.51
24.70

5.064
5.8O6
6.611
8.o7o

0

2.288
4.953

8.948
13.59
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Figure i.- Curved rectangular panel under a combination of shear and
direct axial stress.
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